Weak-Strong Uniqueness for Measure-Valued Solutions
نویسندگان
چکیده
منابع مشابه
Weak-strong Uniqueness for Measure-valued Solutions
We prove the weak-strong uniqueness for measure-valued solutions of the incompressible Euler equations. These were introduced by R.DiPerna and A.Majda in their landmark paper [10], where in particular global existence to any L initial data was proven. Whether measure-valued solutions agree with classical solutions if the latter exist has apparently remained open. We also show that DiPerna’s mea...
متن کاملStrong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system
This article is devoted to the study of the nonhomogeneous incompressible NavierStokes system in dimension d ≥ 3. We use new a priori estimates, that enable us to deal with low-regularity data and vanishing density. In particular, we prove new well-posedness results that improve the results of Danchin [6] by considering a less regular initial density, without a lower bound. Also, we obtain the ...
متن کاملNavier-Stokes-Fourier System on Unbounded Domains: Weak Solutions, Relative Entropies, Weak-Strong Uniqueness
We investigate the Navier-Stokes-Fourier system describing the motion of a compressible, viscous and heat conducting fluid on large class of unbounded domains with no slip and slip boundary conditions. We propose a definition of weak solutions, that is particularly convenient for the treatment of the Navier-Stokes-Fourier system on unbounded domains. We prove existence of weak solutions for arb...
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملWeak-strong uniqueness for the isentropic compressible Navier-Stokes system
We prove weak-strong uniqueness results for the isentropic compressible Navier-Stokes system on the torus. In other words, we give conditions on a strong solution so that it is unique in a class of weak solutions. Known weak-strong uniqueness results are improved. Classical uniqueness results for this equation follow naturally.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2011
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-011-1267-0